61 research outputs found

    PAPIERCRAFT: A PAPER-BASED INTERFACE TO SUPPORT INTERACTION WITH DIGITAL DOCUMENTS

    Get PDF
    Many researchers extensively interact with documents using both computers and paper printouts, which provide an opposite set of supports. Paper is comfortable to read from and write on, and it is flexible to be arranged in space; computers provide an efficient way to archive, transfer, search, and edit information. However, due to the gap between the two media, it is difficult to seamlessly integrate them together to optimize the user's experience of document interaction. Existing solutions either sacrifice inherent paper flexibility or support very limited digital functionality on paper. In response, we have proposed PapierCraft, a novel paper-based interface that supports rich digital facilities on paper without sacrificing paper's flexibility. By employing the emerging digital pen technique and multimodal pen-top feedback, PapierCraft allows people to use a digital pen to draw gesture marks on a printout, which are captured, interpreted, and applied to the corresponding digital copy. Conceptually, the pen and the paper form a paper-based computer, able to interact with other paper sheets and computing devices for operations like copy/paste, hyperlinking, and web searches. Furthermore, it retains the full range of paper advantages through the light-weighted, pen-paper-only interface. By combining the advantages of paper and digital media and by supporting the smooth transition between them, PapierCraft bridges the paper-computer gap. The contributions of this dissertation focus on four respects. First, to accommodate the static nature of paper, we proposed a pen-gesture command system that does not rely on screen-rendered feedback, but rather on the self-explanatory pen ink left on the paper. Second, for more interactive tasks, such as searching for keywords on paper, we explored pen-top multimodal (e.g. auditory, visual, and tactile) feedback that enhances the command system without sacrificing the inherent paper flexibility. Third, we designed and implemented a multi-tier distributed infrastructure to map pen-paper interactions to digital operations and to unify document interaction on paper and on computers. Finally, we systematically evaluated PapierCraft through three lab experiments and two application deployments in the areas of field biology and e-learning. Our research has demonstrated the feasibility, usability, and potential applications of the paper-based interface, shedding light on the design of the future interface for digital document interaction. More generally, our research also contributes to ubiquitous computing, mobile interfaces, and pen-computing

    Planar Object Tracking in the Wild: A Benchmark

    Full text link
    Planar object tracking is an actively studied problem in vision-based robotic applications. While several benchmarks have been constructed for evaluating state-of-the-art algorithms, there is a lack of video sequences captured in the wild rather than in constrained laboratory environment. In this paper, we present a carefully designed planar object tracking benchmark containing 210 videos of 30 planar objects sampled in the natural environment. In particular, for each object, we shoot seven videos involving various challenging factors, namely scale change, rotation, perspective distortion, motion blur, occlusion, out-of-view, and unconstrained. The ground truth is carefully annotated semi-manually to ensure the quality. Moreover, eleven state-of-the-art algorithms are evaluated on the benchmark using two evaluation metrics, with detailed analysis provided for the evaluation results. We expect the proposed benchmark to benefit future studies on planar object tracking.Comment: Accepted by ICRA 201

    TrafficView: Towards a Scalable Traffic Monitoring System

    Get PDF
    Vehicles are part of people's life in modern society, into which more and more high-tech devices are integrated, and a common platform for inter-vehicle communication is necessary to realize an intelligent transportation system supporting safe driving, dynamic route scheduling, emergency message dissemination, and traffic condition monitoring. TrafficView, which is a part of the e-Road project, defines a framework to disseminate and gather information about the vehicles on the road. Using such a system will provide a vehicle driver with road traffic information, which helps driving in situations as foggy weather, or finding an optimal route in a trip several miles long. This paper describes the basic design of TrafficView and different algorithms used in the system. (UMIACS-TR-2003-98

    Preparation and Characterization of Silkworm Pupa SourcePeptide-zinc Nanoparticles

    Get PDF
    Silkworm pupa peptide (SCP) was prepared by enzymatic hydrolysis and then chelated with soluble zinc ions to obtain silkworm pupa peptide-zinc chelates (SCP-Zn), so as to develop safe and easily absorbable zinc supplements and improve the utilization value of silkworm pupa. Taking the zinc chelating capacity as an index, the optimum preparation process of SCP-Zn was determined, and the structure of both SCP and SCP-Zn were characterized by ultraviolet spectrum, fluorescence spectra, scanning electron microscopy, elemental analysis, particle size analysis and Fourier transform infrared spectrum. The results showed that the chelation rate of silkworm chrysalis peptide was 58.05% under the conditions of 1% alkaline protease plus enzyme, pH8.0, temperature 50 ℃ and enzymatic hydrolysis time 6 h. The optimum preparation conditions for preparation of SCP-Zn nanoparticles were as follows: Mass ratio of zinc peptide 1:0.5, pH6.5, 55 ℃, time 20 min, and the chelation rate of zinc reached 72.63%. The results of ultraviolet spectrum and fluorescence spectrum showed that zinc ions successfully combined with SCP. The obtained chrysalis SCP-Zn belongs to nanoparticles with an average particle size of 71.99 nm, with uniform granular structure on the surface, and the relative content of zinc reached 37.46%. The -COOH, -NH2 and -C=O in the peptide chain were the main binding sites of Zn2+ and SCP. The results indicated that silkworm pupa was a good raw material for preparation of zinc chelates. The study provides a theoretical basis for enriching organic zinc supplement resources and the high value utilization of silkworm pupa
    • …
    corecore